Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Nat Commun ; 15(1): 3820, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744833

ABSTRACT

Lead (Pb2+) toxification is a concerning, unaddressed global public health crisis that leads to 1 million deaths annually. Yet, public policies to address this issue have fallen short. This work harnesses the unique abilities of crown ethers, which selectively bind to specific ions. This study demonstrates the synergistic integration of highly-scalable silicon photonics, with crown ether amine conjugation via Fischer esterification in an environmentally-friendly fashion. This realizes an integrated photonic platform that enables the in-operando, highly-selective and quantitative detection of various ions. The development dispels the existing notion that Fischer esterification is restricted to organic compounds, facilitating the subsequent amine conjugation for various crown ethers. The presented platform is specifically engineered for selective Pb2+ detection, demonstrating a large dynamic detection range, and applicability to field samples. The compatibility of this platform with cost-effective manufacturing indicates the potential for pervasive implementation of the integrated photonic sensor technology to safeguard against societal Pb2+ poisoning.

2.
ESC Heart Fail ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520316

ABSTRACT

Left ventricular assist device (LVAD) implantation is an effective alternative treatment to heart transplantation, especially for end-stage heart failure patients who are ineligible for or unable to await a heart transplant. This report describes a complex and innovative surgery where LVAD implantation was performed alongside multiple concomitant cardiac and aortic procedures. A 62-year-old male patient with complicated comorbidities developed acute myocardial infarction and subsequent refractory advanced heart failure. Given his critically ill condition and intractable anatomical malformations, the CH-VAD left ventricular assist system implantation was performed concomitantly with the Bentall procedure, coronary artery bypass grafting, tricuspid valvuloplasty, and foramen ovale closure. The patient was successfully discharged. This case details the medical decision-making process and surgical strategy and demonstrates the feasibility of LVAD implantation combined with multiple additional cardiac and aortic procedures in expert cardiac centres. Success relies on experienced cardiac surgeons and a multidisciplinary LVAD Heart Team, ensuring excellence in surgical techniques, preoperative evaluation, post-operative care, and rehabilitation.

3.
Cancer Gene Ther ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467765

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous ß-glucuronidase in mammals. In addition to its well-established enzymatic roles, HPSE critically exerts non-catalytic function in tumor biology. This study herein aimed to investigate the non-enzymatic roles of HPSE as well as relevant regulatory mechanisms in ICC. Our results demonstrated that HPSE was highly expressed in ICC and promoted the proliferation of ICC cells, with elevated HPSE levels implicating a poor overall survival of ICC patients. Notably, HPSE interacted with Bcl-2-associated factor 1 (BCLAF1) to upregulate the expression of Bcl-2, which subsequently activated the PERK/eIF2α-mediated endoplasmic reticulum (ER) stress pathway to promote anti-apoptotic effect of ICC. Moreover, our in vivo experiments revealed that concomitant administration of gemcitabine and the Bcl-2 inhibitor navitoclax enhanced the sensitivity of ICC cells with highly expressed HPSE to chemotherapy. In summary, our findings revealed that HPSE promoted the development and drug resistance of ICC via its non-enzymatic function. Bcl-2 may be considered as an effective target with therapeutic potential to overcome ICC chemotherapy resistance induced by HPSE, presenting valuable insights into the development of novel therapeutic strategies against ICC.

4.
Opt Express ; 31(20): 33548-33564, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859134

ABSTRACT

The escalating need for expansive data bandwidth, and the resulting capacity constraints of the single mode fiber (SMF) have positioned the 2-µm waveband as a prospective window for emerging applications in optical communication. This has initiated an ecosystem of silicon photonic components in the region driven by CMOS compatibility, low cost, high efficiency and potential for large-scale integration. In this study, we demonstrate a plasma dispersive 4 × 4 photonic switch operating at the 2-µm waveband with the highest switching speed. The demonstrated switch operates across a 45-nm bandwidth, with 10-90% rise and 90-10% fall time of 1.78 ns and 3.02 ns respectively. In a 4 × 4 implementation, crosstalk below -15 dB and power consumption lower than 19.15 mW across all 16 optical paths are indicated. This result brings high-speed optical switching to the portfolio of devices at the promising waveband.

5.
Small ; 19(50): e2304677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632318

ABSTRACT

To achieve high-performance solid-state lithium-metal batteries (SSLMBs), solid electrolytes with high ionic conductivity, high oxidative stability, and high mechanical strength are necessary. However, balancing these characteristics remains dramatically challenging and is still not well addressed. Herein, a simple yet effective design strategy is presented for the development of high-performance polymer electrolytes (PEs) by exploring the synergistic effect between dynamic H-bonded networks and conductive zwitterionic nanochannels. Multiple weak intermolecular interactions along with ample nanochannels lead to high oxidative stability (over 5 V), improved mechanical properties (strain of 1320%), and fast ion transport (ionic conductivity of 10-4 S cm-1 ) of PEs. The amphoteric ionic functional units also effectively regulate the lithium ion distribution and confine the anion transport to achieve uniform lithium ion deposition. As a result, the assembled SSLMBs exhibit excellent capacity retention and long-term cycle stability (average Coulombic efficiency: 99.5%, >1000 cycles with LiFePO4 cathode; initial capacity: 202 mAh g-1 , average Coulombic efficiency: 96%, >230 cycles with LiNi0.8 Co0.1 Mn0.1 O2 cathode). It is exciting to note that the corresponding flexible cells can be cycled stably and can withstand severe deformation. The resulting polyzwitterion-mediated PE therefore offers great promise for the next-generation safe and high-energy-density flexible energy storage devices.

6.
RSC Adv ; 13(25): 16837-16849, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37283874

ABSTRACT

It is important to improve phase change materials (PCMs) with appropriate temperature and excessive latent heat to accelerate the application of latent heat energy storage technology in solar energy storage systems. In this paper, the eutectic salt of NH4Al(SO4)2·12H2O (AASD) and MgSO4·7H2O (MSH) was prepared and the performance was studied. The DSC results show that the optimum content of AASD in the binary eutectic salt is 55 wt%, the melting point was 76.4 °C, and the latent heat is up to 189.4 J g-1, which is suitable for solar power storage systems. Four nucleating agents (KAl(SO4)2·12H2O, MgCl2·6H2O, CaCl2·2H2O, CaF2) and two thickening agents (sodium alginate, soluble starch) are added to the mixture in varying proportions to improve its supercooling. The best combination system was 2.0 wt% KAl(SO4)2·12H2O/1.0 wt% sodium alginate with a supercooling degree of 24.3 °C. After thermal cycling tests, the best formulation of the AASD-MSH eutectic salt phase change material was determined to be 1.0 wt% CaCl2·2H2O/1.0 wt% soluble starch. The latent heat was 176.4 J g-1 and the melting point was 76.3 °C. The supercooling was still lower than 30 °C after 50 thermal cycles, which served as a benchmark for the next investigation.

7.
J Cell Physiol ; 238(5): 896-917, 2023 05.
Article in English | MEDLINE | ID: mdl-36924082

ABSTRACT

Heparanase (HPSE; heparanase-1) is an endo-ß-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Heparan Sulfate Proteoglycans , Glucuronidase/genetics , Extracellular Matrix
8.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36394948

ABSTRACT

Fatty acid (FA) composition contributes greatly to the quality and nutritional value of lamb meat. In the present study, FA was measured in longissimus thoracis (LT) muscles of 1,085 Hu sheep using gas chromatography. Comparative transcriptomic analysis was conducted in LT muscles to identify differentially expressed genes (DEGs) between six individuals with high polyunsaturated fatty acids (H-PUFA, 15.27% ± 0.42%) and six with low PUFA (L-PUFA, 5.22% ± 0.25%). Subsequently, the single nucleotide polymorphisms (SNPs) in a candidate gene PLIN2 were correlated with FA traits. The results showed a total of 29 FA compositions and 8 FA groups were identified, with the highest content of monounsaturated fatty acids (MUFA, 46.54%, mainly C18:1n9c), followed by saturated fatty acids (SFA, 44.32%, mainly C16:0), and PUFA (8.72%, mainly C18:2n6c), and significant correlations were observed among the most of FA traits. Transcriptomic analyses identified 110 upregulated and 302 downregulated DEGs between H-PUFA and L-PUFA groups. The functional enrichment analysis revealed three significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 17 gene ontology (GO) terms, in which regulation of lipolysis in adipocytes, the AMPK signaling pathway, and the PPAR signaling pathway may play important roles in FA metabolism and biosynthesis. In addition, weighted gene co-expression network analysis (WGCNA) identified 37 module genes associated with PUFA-related traits. In general, PLIN1, LIPE, FABP4, LEP, ACACA, ADIPOQ, SCD, PCK2, FASN, PLIN2, LPL, FABP3, THRSP, and ACADVL may have a great impact on PUFA metabolism and lipid deposition. Four SNPs within PLIN2 were significantly associated with FA. Of those, SNP1 (g.287 G>A) was significantly associated with C18:1n9c and MUFA, and SNP4 (g.7807 T>C) was significantly correlated with PUFA (C18:3n3). In addition, the combined genotype of SNP1 (g.287 G>A), SNP3 (g.7664 T>C), and SNP4 (g.7807 T>C) were significantly correlated with C16:1, C17:0, C18:1C6, PUFA (C18:3n3, C22:6n3), and n-6/n-3 PUFA. These results contribute to the knowledge of the biological mechanisms and genetic markers involved in the composition of FA in Hu sheep.


In this study, 29 fatty acids (FAs) compositions and 8 FA groups were identified in 1,085 longissimus thoracis muscles of Hu sheep, and a significant correlation was observed among most FA traits. Transcriptomic analyses identified 412 differentially expressed genes (DEGs) between high polyunsaturated fatty acid (H-PUFA) and low PUFA (L-PUFA) groups. The functional enrichment analysis revealed that regulation of lipolysis in adipocytes, the AMPK signaling pathway, and the PPAR signaling pathway may play important roles in FA metabolism and biosynthesis. In general, PLIN1, LIPE, FABP4, LEP, ACACA, ADIPOQ, SCD, PCK2, FASN, PLIN2, LPL, FABP3, THRSP, and ACADVL may affect PUFA metabolism and lipid deposition. Four single nucleotide polymorphisms (SNPs) within PLIN2 were significantly associated with FA, especially SNP4 (g.7807 T>C) significantly correlated with C18:3n3, the combined genotype significantly associated with C18:3n3, C22:6n3, and n-6/n-3 PUFA. These results contribute to the knowledge of biological mechanisms and genetic markers involved in the FA composition of Hu sheep.


Subject(s)
Fatty Acids , Red Meat , Animals , Sheep/genetics , Fatty Acids/metabolism , Polymorphism, Single Nucleotide , Fatty Acids, Unsaturated , Red Meat/analysis , Muscles/metabolism
9.
Anim Biotechnol ; : 1-10, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36448692

ABSTRACT

The content of intramuscular fat (IMF) is one of the most important factors that has a large impact on meat quality, and it is an effective way to improve IMF according to marker-assisted selection (MAS). Fatty-acid synthase (FASN) is a key gene in meat lipid deposition and fatty acid composition. Thus, this study was conducted to investigate the expression profile of FASN in mRNA and protein levels using real-time quantitative PCR (RT-qPCR) and western-blot methods. In addition, single nucleotide polymorphisms (SNPs) within FASN in 921 Hu rams with IMF content records were investigated using DNA-pooling sequencing and improved multiple ligase detection reaction (iMLDR) methods. Consequently, the highest mRNA expression level of FASN was observed in the perinephric fat, and the lowest in the liver among the 11 tissues analyzed, while no significant difference was found in mRNA and protein expression levels in longissimus dorsi among individuals with different IMF contents. A total of 10 putative SNPs were identified within FASN, and 9 of them can be genotyped by iMLDR method. Notably, two SNPs were significantly associated with IMF content, including NC_040262.1: g.5157 A > G in intron 5 (p = 0.046) and NC_040262.1: g.9413 T > C in intron 16 (p = 0.041), which supply molecular markers for improving meat quality in sheep breeding.

10.
Front Chem ; 10: 926353, 2022.
Article in English | MEDLINE | ID: mdl-36157032

ABSTRACT

Heparanase, a member of the carbohydrate-active enzyme (CAZy) GH79 family, is an endo-ß-glucuronidase capable of degrading the carbohydrate moiety of heparan sulphate proteoglycans, thus modulating and facilitating remodeling of the extracellular matrix. Heparanase activity is strongly associated with major human pathological complications, including but not limited to tumour progress, angiogenesis and inflammation, which make heparanase a valuable therapeutic target. Long-due crystallographic structures of human and bacterial heparanases have been recently determined. Though the overall architecture of human heparanase is generally comparable to that of bacterial glucuronidases, remarkable differences exist in their substrate recognition mode. Better understanding of regulatory mechanisms of heparanase in substrate recognition would provide novel insight into the anti-heparanase inhibitor development as well as potential clinical applications.

11.
Front Nutr ; 9: 908355, 2022.
Article in English | MEDLINE | ID: mdl-35967801

ABSTRACT

Intramuscular fat (IMF) contributes importantly to various aspects of meat quality, and genetic regulation is an effective pathway to improve IMF deposition in sheep. In this study, we systematically explored the effect of IMF content on meat quality in Tan sheep and investigated the regulatory mechanism of flavor precursors metabolism and IMF deposition. The results revealed that IMF significantly affected meat color, total muscle fiber numbers, and muscle fiber types in Tan sheep. Widely-targeted metabolomic analysis showed that amino acids were the main differential flavor precursors between lambs with different IMF content. Importantly, the comparison of fatty acid profiles revealed that saturated fatty acids and monounsaturated fatty acids are beneficial for IMF deposition. Furthermore, integrated analysis between metabolome and transcriptome indicated that MME is a key gene resulting in the reduction of amino acids in lambs with high IMF content; and the joint analysis between fatty acid profiles and transcript profiles showed that ADIPOQ, FABP4, PLIN1, PPARGC1A, SLC2A1 accelerated IMF deposition through positive regulation of saturated fatty acids and monounsaturated fatty acids metabolism. These results revealed key changes in meat quality affected by IMF content and the corresponding genetic mechanism, which may provide a new insight for understanding the IMF differential deposition and for improving meat quality in Tan sheep.

12.
Sci Rep ; 12(1): 5010, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35322141

ABSTRACT

Monolithic two-section InGaAs/GaAs double quantum well (DQW) passively mode-locked lasers (MLLs) with asymmetric waveguide, consisting of the layers of p-doped AlGaAs waveguide and no-doped InGaAsP waveguide, emitting at ~ 1.06 µm, with a fundamental repetition rate at ~ 19.56 GHz have been demonstrated. Modal gain characteristics, such as a gain bandwidth and a gain peak wavelength of the MLL, as a function of the saturable absorber (SA) bias voltage (Va) as well as the injection current of gain section (Ig), were investigated by the Hakki-Paoli method. With the increase of Va, the lasing wavelength and net modal gain peak of the MLL both exhibited red-shifts to longer wavelength significantly, while the modal gain bandwidth was narrowed. Both the net modal gain bandwidth and gain peak of the MLL followed a polynomial distribution versus the reverse bias at the absorber section. In addition, for the first time, it was found that Va had an obvious effect on the modal gain characteristics of the MLL.

13.
Sensors (Basel) ; 22(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35271049

ABSTRACT

High-precision, real-time, and long-range target geo-location is crucial to UAV reconnaissance and target strikes. Traditional geo-location methods are highly dependent on the accuracies of GPS/INS and the target elevation, which restricts the target geo-location accuracy for LRORS. Moreover, due to the limitations of laser range and the common, real time methods of improving the accuracy, such as laser range finders, DEM and geographic reference data are inappropriate for long-range UAVs. To address the above problems, a set of work patterns and a novel geo-location method are proposed in this paper. The proposed method is not restricted by conditions such as the accuracy of GPS/INS, target elevation, and range finding instrumentation. Specifically, three steps are given, to perform as follows: First, calculate the rough geo-location of the target using the traditional method. Then, according to the rough geo-location, reimage the target. Due to errors in GPS/INS and target elevation, there will be a re-projection error between the actual points of the target and the calculated projection ones. Third, a weighted filtering algorithm is proposed to obtain the optimized target geo-location by processing the reprojection error. Repeat the above process until the target geo-location estimation converges on the true value. The geo-location accuracy is improved by the work pattern and the optimization algorithm. The proposed method was verified by simulation and a flight experiment. The results showed that the proposed method can improve the geo-location accuracy by 38.8 times and 22.5 times compared with traditional methods and DEM methods, respectively. The results indicate that our method is efficient and robust, and can achieve high-precision target geo-location, with an easy implementation.

14.
Opt Express ; 30(3): 4117-4124, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209656

ABSTRACT

Optical frequency combs (OFCs) in the 1.65 µm wavelength band are promising for methane sensing and extended high-capacity optical communications. In this work, a frequency-modulated (FM) OFC is generated from a 1.65 µm single-section quantum well laser. This is characterized by a 1 kHz-wide beatnote signal at ∼19.4 GHz. Typical FM optical spectra are shown and optical linewidth of the OFC narrows through the mutual injection locking process in the comb formation. No distinct pulse train is observed on oscilloscope, which conforms with the FM operation. Furthermore, to add further evidence that four-wave mixing (FWM) is the driving mechanism of the comb formation, FWM frequency conversion characterization is conducted on a semiconductor optical amplifier (SOA) fabricated together with the tested laser. An efficiency of ∼-30 dB confirms the capability of FM mode locking.

15.
Anal Chim Acta ; 1186: 339126, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34756257

ABSTRACT

CuxO nanorods with excellent NADH peroxidase mimics were synthesized by a simple hydrothermal method. The catalytic oxidation of NADH to NAD cofactor strictly follows the enzymatic kinetics with high catalytic rate and strong affinity. The catalytic mechanism of CuxO NRs was that in the presence of hydrogen peroxide, the catalytic oxidizing NADH to NAD + involving with O2.-.anion production, making it realistic to mutually convert between coenzymes. Considering that the mutual transformation of NADH/NAD cofactors plays an important role in biological function, combination of CuxO NRs with alcohol dehydrogenase, a highly selective method for fluorimetric detection of ethanol was established. The as-proposed sensing platform is capable of dectecting alcohol with the limit of detection of 26.7 µM (S/N = 3) and applied in practical sample with satisfied accuracy and recovery. The as-developed regenerable NADH peroxidase mimics would also cast lights in biocatalysis, synthetic biology and bioenergy.


Subject(s)
Ethanol , Nanotubes , Fluorometry , Peroxidases
17.
Talanta ; 233: 122594, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215083

ABSTRACT

Nanozymes are artificial enzymes, which can substitute natural enzymes for wide range of catalysis-based applications. However, it is challenging to explore novel mimic enzymes or multi-enzyme mimics. Herein we report the facile preparation of uniform CuS nanoclusters (NCs), which possessed outstanding tetra-enzyme mimetic catalytic activities, including peroxidase (POD)-mimics, catalase (CAT)-mimics, ascorbic acid oxidase (AAO)-mimics and superoxide dismutase (SOD)-mimics. The catalytic mechanism of POD-like was coming from the oxygen vacancies of CuS. Furthermore, the steady-state kinetics of POD-, CAT- and AAO mimics of CuS NCs were systematically explored. On basis of the enzymatic cascade reaction that acid phosphatase (ACP) involved in a weak acidic environment, in the presence of O-phenylenediamine, quinoxaline fluorescent substance will be generated. Thus, a fluorescent biosensor platform was proposed for detection of ACP with the linear range of 0.05-25 U L-1 and limit of detection of 0.01 U L-1. The as-proposed method was applicable to real serum sample detection accurately and reproducibly. Considering the simple preparation, good stability, excellent multi-enzyme activities and controllable experimental operation, CuS NCs would provide a basis for expanding to other biocatalytic and biomedical applications.


Subject(s)
Acid Phosphatase , Copper , Catalysis , Hydrogen Peroxide , Peroxidase , Sulfides
18.
Analyst ; 146(14): 4630-4635, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34165454

ABSTRACT

A simple colorimetric sensing strategy for Hg2+ ions was developed using silver/copper nanoclusters (Ag/Cu NCs) with excellent selectivity and sensitivity. Bimetallic Ag/Cu NCs were synthesized by using glutathione (GSH) as a template and sodium borohydride as a reducing agent. It was found that the peroxidase-like activity of Ag/Cu NCs was significantly enhanced in the presence of Hg2+. Therefore, a colorimetric method based on catalysis was developed to detect Hg2+ with a linear concentration range of 0.1-700 nM and a detection limit of 0.05 nM (S/N = 3). The common species have no effect on Hg2+ ion detection. Furthermore, this method is applicable to accurately detect Hg2+ in real aqueous samples and is reproducible. Therefore, owing to the merits of sensitivity, selectivity, rapid response and visual read-out, it can be promising in the development of a portable Hg2+ analyzer for on-site detection.


Subject(s)
Mercury , Metal Nanoparticles , Colorimetry , Copper , Peroxidase , Peroxidases , Silver
19.
Chem Commun (Camb) ; 56(78): 11637-11640, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32870197

ABSTRACT

Histidine can trigger bimetallic gold/copper nanoclusters to turn on strong red fluoresence, which is capable of sensing nanomolar levels of histidine selectively.

20.
Opt Express ; 28(17): 25215-25224, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907047

ABSTRACT

The wavelength region about of 1650 nm enables pervasive applications. Some instances include methane spectroscopy, free-space/fiber communications, LIDAR, gas sensing (i.e. C2H2, C2H4, C3H8), surgery and medical diagnostics. In this work, through the hybrid integration between an III-V optical amplifier and an extended, low-loss wavelength tunable silicon Vernier cavity, we report for the first time, a III-V/silicon hybrid wavelength-tunable laser covering the application-rich wavelength region of 1647-1690 nm. Room-temperature continuous wave operation is achieved with an output power of up to 31.1 mW, corresponding to a maximum side-mode suppression ratio of 46.01 dB. The laser is ultra-coherent, with an estimated linewidth of 0.7 kHz, characterized by integrating a 35 km-long recirculating fiber loop into the delayed self-heterodyne interferometer setup. The laser linewidth is amongst the lowest in hybrid/heterogeneous III-V/silicon lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...